Scikit-Learn
Scikit-learnのElasticNetクラスによるElastic Net
·1624 文字·4 分
Scikit-learnのElasticNetクラスによるElastic Netについて解説します。
Scikit-learnのLinearRegressionクラスによる線形回帰
·1902 文字·4 分
Scikit-learnのLinearRegressionクラスによる線形回帰について解説します。
Scikit-learnのSVCクラスによるサポートベクターマシン
·1924 文字·4 分
サポートベクターマシン (SVM, support vector machine) は分類アルゴリズムの1つです。SVMは線形・非線形な分類のどちらも扱うことができます。また、構造が複雑な中規模以下のデータの分類に適しています。
Scikit-learnのDecisionTreeClassifierクラスによる分類木
·3865 文字·8 分
分類木 (classification tree) は、分析したデータが属するカテゴリー(クラス)を予測する分類アルゴリズムの1つです。分類木では、Yes/Noによる分岐を何度か繰り返して、分類の予測を返します。
Scikit-learnのPolynomialFeaturesでべき乗を求める
·1917 文字·4 分
PolynomialFeaturesクラスの引数とメソッドについて解説する。また、特徴量の数を1~3まで変化させ、オプションによって出力がどのように変化するか確認する。
scikit-learnのBaggingClassifierでバギングする
·2756 文字·6 分
BaggingClassifierを用いた学習(バギング、ペースティング、ランダムサブスペース、ランダムパッチ)について解説する。
Scikit-learnの正則化付き重回帰モデル
·2498 文字·5 分
Scikit-learnに実装されている重回帰、Ridge回帰、Lasso回帰、Elastic Netのロジックと使用方法をまとめた。